Heat exchanger technology and applications: ground source heat pump system for buildings heating and cooling

نویسنده

  • Abdeen Omer
چکیده

The earth’s surface acts as a huge solar collector, absorbing radiation from the sun. In the UK, the ground maintains a constant temperature of 11-13oC several metres below the surface all the year around.1 Among many other alternative energy resources and new potential technologies, the ground source heat pumps (GSHPs) are receiving increasing interest because of their potential to reduce primary energy consumption and thus reduce emissions of greenhouse gases.2 Direct expansion GSHPs are well suited to space heating and cooling and can produce significant reduction in carbon emissions. In the vast majority of systems, space cooling has not been normally considered, and this leaves ground-source heat pumps with some economic constraints, as they are not fully utilised throughout the year. The tools that are currently available for design of a GSHP system require the use of key site-specific parameters such as temperature gradient and the thermal and geotechnical properties of the local area. A main core with several channels will be able to handle heating and cooling simultaneously, provided that the channels to some extent are thermally insulated and can be operated independently as single units, but at the same time function as integral parts of the entire core. Loading of the core is done by diverting warm and cold air from the heat pump through the core during periods of excess capacity compared to the current needs of the building.3,4 The cold section of the core can also be loaded directly with air during the night, especially in spring and fall when nighttimes are cooler and daytimes are warmer. The shapes and numbers of the internal channels and the optimum configuration will obviously depend on the operating characteristics of each installation. Efficiency of a GSHP system is generally much greater than that of the conventional air-source heat pump systems. Higher COP (coefficient of performance) is achieved by a GSHP because the source/sink earth temperature is relatively constant compared to air temperatures. Additionally, heat is absorbed and rejected through water, which is a more desirable heat transfer medium due to its relatively high heat capacity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

01 The conceptual design of the photovoltaic solar thermal collector hybrid system and the ground source heat pump to provide electricity, heating and cooling a residential building focusing on technical, economic and environmental parameters.

This paper attempts to present and compare four solar assisted ground source heat pump combined systems with series and parallel layouts and direct and indirect heat exchange in Zahedan in order to supply part of the electricity demand for equipment and selling surplus electricity to the grid as a source of project financing and revenue generation for residents, moreover, fulfill the region's n...

متن کامل

Assessment of Hybrid Geothermal Heat Pump Systems - Technology Installation Review

No portion of this publication may be altered in any form without prior written consent from the U.S. Department of Energy and the authoring national laboratory. both residential and commercial/institutional buildings. However, GHPs often have higher first costs than conventional systems making short-term economics unattractive. This disadvantage can be magnified in commercial buildings, many o...

متن کامل

Current status of ground source heat pumps in Europe

Geothermal Heat Pumps, or Ground Source Heat Pumps (GSHP), are systems combining a heat pump with a ground heat exchanger (closed loop systems), or fed by ground water from a well (open loop systems). They use the earth as a heat source when operating in heating mode, with a fluid (usually water or a water-antifreeze-mixture) as the media transferring the heat from the earth to the evaporator o...

متن کامل

Determining the optimal size of a ground source heat pump within an air-conditioning system with economic and emission considerations

One of the most challenging issues in modern-day building energy management involves equipping the buildings with more energy efficient facilities. In this paper, a hybrid system for cooling/heating for a residential building is developed and optimized. The system consists of a ground source heat pump (GSHP) as well as an electric chiller (EC) and boiler. The model is implemented in MATLAB ...

متن کامل

Energy efficiency in a building complex through seasonal storage of thermal energy in a confined aquifer

Confined aquifers are formations surrounded by impermeable layers called cap rocks and bed rocks. These aquifers are suitable for the seasonal storage of thermal energy. A confined aquifer was designed to meet the cooling and heating energy needs of a residential building complex located in Tehran, Iran. The annual cooling and heating energy needs of the buildings were estimated to be 8.7...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018